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Abstract

The objective of this paper is to test the ability of equal-area quadratic splines to predict soil
depth functions based on bulk horizon data. In addition, the possibility of improving the prediction
quality by the use of additional samples from the top andror bottom of soil profiles along with
horizon data is examined. The predictive performance of the splines is compared with that of
exponential decay functions, and 1st and 2nd degree polynomials. In addition, the predictive
quality of the conventional horizon data is examined. The measure of predictive performance used
is the root mean square error values calculated from differences between the ‘true’ depth function
and the fitted depth function. The ‘true’ depth functions were derived from the intensive sampling
and laboratory analysis of soil profiles. Three soil profiles were sampled; a Red Podzolic Soil
Ž . Ž . Ž .Red Kurosol , Podzol Aeric Podosol and Krasnozem Red Ferrosol . The soil attributes that

Ž .were measured included; pH, electrical conductivity EC , clay %, sand %, organic carbon %,
gravimetric water content at y33 kPa and air dry. The results clearly indicated the superiority of
equal-area quadratric splines in predicting depth functions. Such splines depend on a parameter, l

that controls goodness-of-fit vs. roughness. Their quality of fit varied with the l value used and it
was found that a l value of 0.1 was the best overall predictor of the depth functions. The results
also showed that using additional samples from the top andror bottom of the soil profiles
improved the prediction quality of the spline functions. q 1999 Elsevier Science B.V. All rights
reserved.
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1. Introduction

Soil attributes in general vary continuously with depth in a soil profile
Ž .Russell and Moore, 1968 . In contrast to this, the traditional method of
sampling soil involves dividing a soil profile into horizons. The number of
horizons and the position of each is generally based on attributes easily observed
in the field, such as morphological soil properties. From each horizon, a bulk
sample is taken and it is assumed to represent the average value for a soil
attribute over the depth interval from which it is sampled. Consequently, the
analysis of well mixed bulk horizon samples when presented as a depth function

Ž .is stepped rather than varying continuously with depth Colwell, 1970 .
The discontinuous nature of depth functions derived from bulk horizon data

may cause inaccuracies when attempting to predict the value of an attribute at
specific depths within a soil profile, in addition the minima and maxima may be

Ž .damped Ponce-Hernandez et al., 1986 . This is a source of concern as, in many
different fields of soil science, accurate soil-depth data are becoming increas-
ingly important, especially for use in computer simulation models for environ-
mental and agricultural purposes.

Due to the possible inadequacies of horizon data in accurately representing
depth functions, soil scientists have in the past attempted to use various methods
to modify horizon data in order to make it more continuous. The earliest

Ž .attempts to do this involved drawing freehand curves see Jenny, 1941 between
data points, where it was assumed that the value obtained for each soil attribute
from the measurement of bulk horizon samples corresponded to the mid-point
depth for the horizon concerned. More sophisticated methods evolved, examples

Žbeing the fitting of exponential decay functions Brewer, 1968; Russell and
.Moore, 1968; Moore et al., 1972 , linear regression and polynomials of the

Ž2nd-degree to 5th-degree to soil depth-data Campbell et al., 1970; Colwell,
.1970 .

Ž .A disadvantage of using polynomials and also exponential decay functions
is that any local variation in the soil profile affects the quality of fit everywhere

Ž .else in the profile Webster, 1978 . Consequently they lack flexibility in fitting
Ž .depth functions and the quality of fit may be quite varied Webster, 1978 . This

problem may be solved by the use of spline functions which can fit a smooth
curve through any set of data points by fitting piece wise a series of local

Žindependent functions over small intervals of a soil profile Jauregui and
.Quirino, 1985 . In spite of this, all of the functions described previously

Ž .including spline functions fit curves through horizon averages, so that they are
based on data that has already been ‘damped’ by averaging. Therefore, they tend

Žto produce smoother depth functions than the real ones Ponce-Hernandez et al.,
.1986 .

Ž .Ponce-Hernandez et al. 1986 proposed a variation of the spline function,
called an equal-area spline which they believed would negate the damping
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effects of using horizon data to model soil attribute depth functions. The key
characteristics of the equal-area spline are as follows.

Ž .1 It consists of a series of local quadratic polynomials with the ‘knots’ or
Ž .positions of joins being located at horizon boundaries Fig. 1 .

Ž .2 For each horizon, the area to the left of the fitted spline curve above the
Ž .horizon average X is equal to the area to the right of the fitted spline curve

Ž .below the horizon average Y thus ensuring the mean value of the horizon is
Ž .maintained Fig. 1 .

Ž .Ponce-Hernandez et al. 1986 did not use ‘real’ depth functions to compare
the prediction quality of the equal-area splines, but instead used fictitious depth
functions derived from freehand drawn curves through horizon data. They then
used the horizon data to fit the equal-area splines and compared the results to the
fictitious depth functions. However, this does not seem a severe enough test of
the equal-area spline approach. Ideally, ‘real’ depth functions should have been
derived from the intensive sampling and analysis of soil profiles. The ‘real’
depth functions could then have been compared to the depth functions derived
from the modelling of the horizon data obtained from the same soil profiles.

Ž .The study of Ponce-Hernandez et al. 1986 could also have been improved
by modelling the soil depth functions with polynomials or exponential decay
functions. This would have enabled direct comparison of the prediction quality
of the equal-area spline with other mathematical functions that have been
previously used to model depth functions. While the authors believe that the
polynomials and exponential decay functions will perform poorly in comparison
to the equal-area splines, we believe some comparison should be performed.

Ž .Fig. 1. An equal-area quadratic spline from Ponce-Hernandez et al. 1986 .
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Ž .Ponce-Hernandez et al. 1986 also attempted to see if any improvements
could be made to the prediction quality of the equal-area spline by the use of
soil samples from the top and bottom of soil profiles in addition to horizon
samples. They believed that the additional samples would impose boundary
conditions on the fitted function, thus improving the prediction quality at the
bottom and top of the profile. Furthermore, for some soil attributes, the greatest

Ž .variation is near the soil surface e.g., organic carbon , therefore an additional
sample at the top of the profile could further improve the quality of the fit. Their
work, while not conclusive, did suggest that the use of the additional samples
aided in improving the prediction quality of the equal-area spline.

Ž .The equal-area splines developed by Ponce-Hernandez et al. 1986 made no
allowance for measurement errors in the data. They also require ad hoc
boundary conditions. We overcame both of these deficiencies by defining

Ž .equal-area quadratic smoothing splines EAQSS , and we show that they solve a
natural variational problem.

As yet, no published work has directly compared the quality of the different
mathematical functions to predict soil attribute depth functions. This comparison
should involve a range of different soil attributes to decide whether there is a
universal mathematical function which fits a wide range of soil attributes or a
series of specialist mathematical functions for individual soil attributes.

Our aims are:

1. to the examine the efficacy of the equal-area quadratic splines in predicting
soil attribute depth functions based on bulk horizon data,

2. to test whether any improvements can be made to the prediction quality of
the mathematical functions by using top andror bottom profile samples in
addition to bulk horizon data, and

3. to compare the results with alternative methods for modelling soil attribute
depth functions.

2. Materials and methods

2.1. Sampling

Three different soil groups were sampled, according to the Australian Great
Ž .Soil Group classification system Stace et al., 1968 . They were: Red Podzolic

Soil, Podzol and Krasnozem. In the most recent Australian soil classification
Ž .system Isbell, 1996 they may be allocated to the classes Red Kurosol, Aeric

Podosol and Red Ferrosol, respectively.
One soil profile was sampled for each of the chosen soil types. To obtain an

estimate of the ‘true’ soil attribute depth functions for each profile, soil samples
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Ž .were taken at 2-cm depth intervals to a depth of 1 m 50 in total . In the
construction of the ‘true’ soil attribute depth functions, we assumed that the
value of each sample obtained from laboratory analysis represented the value of
the soil attribute at the mid-point of the depth interval sampled.

In addition to sampling at 2-cm intervals, the number and position of horizons
were chosen as is normally done in the field, that is, based on field morphologi-
cal characteristics such as colour, structure, and easily measured field attributes
such as field texture. From each horizon, a bulk sample was taken for laboratory
analysis. The analysis of the bulk horizon samples was used to estimate, using
mathematical functions, the true depth function for any particular soil attribute
that had been measured.

2.2. Laboratory analyses

The following attributes were measured in the laboratory for modelling of
Žtheir depth functions in each of the three soil profiles sampled; pH 1:5 soil:0.01

. Ž . ŽM CaCl extracts , EC 1:5 soil:water extracts , clay and sand content hydrom-2
. Ž . Žeter method , organic carbon content colometrically , air-dry w oven equilibra-

. Ž .tion and w at y33 kPa pressure plate method .

2.3. Mathematical functions

The mathematical functions used to estimate the true nature of the soil
Ž . Ž .attribute depth functions were; 1st-degree Lin , 2nd-degree 2P and exponen-

Ž .tial decay functions EDF and the equal-area quadratic smoothing splines
Ž .EAQSS .

Ž .The JMP computer program Lehman and Sall, 1995 was used to fit all of
Ž .the functions with the exception of the equal-area quadratic spline using least

squares regression.
For the exponential decay function, the following equation was used:

ysceyk x 1Ž .
where ysvalue of the soil attribute, xsdepth below the soil surface and c and
k are constants.

2.4. Equal-area quadratic splines

It is assumed that the true soil attribute values vary smoothly with depth. This
needs to be translated into mathematical terms. We denote depth by x, and the

( )depth function describing the true attribute values by f x ; by smoothness, we
( ) X( ) X( )mean that f x and its first derivative f x are both continuous, and that f x is

square integrable.
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Denote the depths of the boundaries of the n horizons by x -x , . . . -x .0 1 n

Often x is the soil surface, so that x s0, but this is not essential. The0 0

measurement of the bulk sample from horizon i is assumed to reflect the mean
attribute level, apart from measurement error. Mathematically, the measurements

( .y is1, . . . , n are modelled asi

y s f qe , 2Ž .i i i

xi Ž . Ž . ( )where f sH f x d xr x x is the mean value of f x over the intervali x i iy1iy1

( .x , x . The errors e are assumed independent, with mean 0 and commoniy1 i i

variance s 2.
( )The function f x is unknown, and must be estimated from the horizon data.

( )Various approaches to a similar problem, that of estimating f x from point data
rather than horizon data, have been suggested by mathematicians over the last
few decades. One of the most popular approaches, splines, may be readily

( )adapted to horizon data, and then consists of choosing the f x that minimises
n x1 n2 2Xy y f ql f x d x . 3Ž . Ž .ž /Ý Hi in x0is1

The first term represents fidelity to the data. The second term measures
( )roughness of the function f x : the rougher the function, as expressed by the

X( )magnitude of f x , the larger this term becomes. The parameter l controls the
trade-off between the fidelity term and the roughness penalty. It may be proven

Ž .using the calculus of variations or otherwise, that the minimiser of Eq. 3 is a
quadratic spline, which we define below. We note in passing that the roughness

( )penalty could involve higher derivatives of f x ; however, for simplicity we
confine our attention to first derivatives in this paper. The choice of l is itself a
non-trivial problem, which we address later; but for the moment we assume l is
given.

( ) ( )We denote the quadratic spline by s x . Within each horizon, s x conforms
( ) ( ) ( )to a quadratic polynomial p x . The polynomials p x and p x for twoi iq1

adjacent horizons meet smoothly at the boundary between the horizons. Thus,
the overall soil attribute curve is given by

s x sp x for x FxFx , is1,2, . . . ,n. 4Ž . Ž . Ž .i iy1 i

The smoothness conditions are

p x sp xŽ . Ž .i i iq1 i
for is1, 2, . . . ny1, 5Ž .X Xp x sp xŽ . Ž .i i iq1 i

and

pX x s0Ž .1 0
6Ž .Xp x s0.Ž .n n
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( )These latter two conditions mean that s x is a so-called natural spline. It has
3n unknown parameters, and there are 2n smoothness conditions. If, in addition,
s , . . . , s are given, the number of equations equals the number of parameters,1 n

so the spline is fully determined.
Ž .The n equations to determine s , . . . , s are obtained by minimising Eq. 3 .1 n

Ž . Ž .Let R be the ny1 = ny1 symmetric tridiagonal matrix with diagonal
Ž .elements R s2 x yx and off-diagonal elements R sR sxii iq1 iy1 iq1, i i, iq1 iq1

Ž .yx . Also, let Q be the ny1 =n matrix with Q sy1, Q s1 andi ii i, iq1

Q s0 otherwise. It is readily proved that the n additional equations arei j

t y1Iq6nlQ R Q ssy , 7Ž .
t tŽ . Ž .where I is the identity matrix, s s s , . . . , s , y s y , . . . , y and t1 n 1 n

denotes the transpose.
The equal-area quadratic splines were fitted using code written in S-PLUS

Ž .Venables and Ripley, 1994 , a statistical computer language. In each case, the
l values 10, 1, 0.1, 0.01, 0.001, 0.0001 and 0.00001 were tried, and the ‘best’
value selected, as we describe later.

2.5. Sampling used for predicting soil attribute depth functions

The mathematical functions used to predict the soil attribute depth functions
were fitted to four different combinations of samples:
1. bulk horizon data;

Ž .2. bulk horizon data and a sample from the top of the soil profile 0–2 cm ;
Ž3. bulk horizon data and a sample from the bottom of the soil profile 98–100

.cm ;
Ž .4. bulk horizon data and samples from both the top 0–2 cm and bottom of the

Ž .soil profile 98–100 cm .

The samples at the top and bottom of the soil profiles, were simply treated as
another, albeit thin, horizon when fitting the mathematical functions. Using the
polynomials as an example, the functions were fitted through the mid-point
depth of the interval concerned, so for the top profile sample the mid-point was
at a depth of 1 cm and for the bottom profile sample the mid-point was at a
depth of 99 cm.

2.6. Assessment of the prediction quality of the mathematical functions

The prediction quality of the mathematical functions was determined by
comparing the predicted depth function with the ‘true’ soil attribute depth
function obtained from measuring the soil profiles at 2 cm depth intervals. Each
combination of mathematical function and sampling scheme was fitted to each
attribute for each profile. In addition the bulk horizon data were treated exactly
like any other mathematical function in that they were also compared to the
‘true’ depth function to determine its prediction quality.
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Estimates of the prediction quality were obtained by the calculation of root
Ž . Ž .mean square error values RMSE Eq. 8 which measure the difference between

the true and fitted function. The smaller the RMSE value, the better is the
prediction quality of the fittingrsampling scheme concerned.

n
2RMSEs 1 n x yx 8Ž . Ž .Ý actual predicted(

is1

2.7. Choosing l for the quadratic splines

The best l value was chosen for each combination of sampling scheme, soil
attribute and soil profile by plotting the l vs. RMSE, with the lowest RMSE
corresponding to the best l value. In some cases, extra l values outside the
range described earlier were needed to minimise the RMSE.

3. Results

3.1. Profile descriptions

A profile description containing the results of the laboratory analysis of the
Ž . Ž .horizons, top 0–2 cm profile samples and bottom 98–100 cm profile samples

is presented in Tables 1–3 for each of the soil profiles used in the experiment.
In determinations of the efficacy of the various fittingrsampling schemes,

versatility was important. To ensure the versatility was tested, the determina-
tions of prediction quality were made across all soil profiles for the various
aspects tested, i.e., for best function, sampling scheme etc.

3.2. Choosing a l Õalue

In a normal situation where no prior information is available about a soil
profile it would not be possible to predict the best l value as described in the

Table 1
Profile description of Red Podzolic Soil from Camden, NSW

Horizon Depth pH EC Clay Sand Organic y33 kPa w AD w
y1 y1 y1Ž . Ž . Ž .interval mS m content content carbon kg kg kg kg

y1 y1 y1Ž . Ž . Ž . Ž .cm dag kg dag kg dag kg

Top 0–2 4.99 10.86 20.9 48.1 4.33 0.271 0.033
A1 0–8 4.74 8.00 21.6 48.5 2.56 0.230 0.024
A2 8–28 4.39 3.28 39.8 47.3 1.42 0.207 0.027
B21 28–68 3.99 8.22 91.4 8.20 1.00 0.395 0.053
B22 68–100 3.85 8.45 87.5 10.6 0.22 0.372 0.056
Bottom 98–100 3.77 8.00 78.6 18.3 0.24 0.375 0.063
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Table 2
Profile description of Podzol from Botany, NSW

Horizon Depth pH EC Clay Sand Organic y33 kPa w AD w
y1 y1 y1Ž . Ž . Ž .interval mS m content content carbon kg kg kg kg

y1 y1 y1Ž . Ž . Ž . Ž .cm dag kg dag kg dag kg

Top 0y2 4.65 5.65 1.46 97.07 1.09 0.044 0.007
A1 0–30 4.32 4.06 1.51 97.99 0.89 0.026 0.005
A2 30–68 4.54 0.68 0.50 99.01 0.11 0.001 0.001
B2 68–100 4.21 0.24 3.34 96.66 0.48 0.032 0.007
Bottom 98–100 3.96 0.21 1.51 96.63 0.22 0.028 0.005

Section 2. Therefore a general pattern was looked for in the data for l values
which were most commonly among the best and could therefore be used as
guidelines for further examination. Two examples are presented in Figs. 2 and 3.
From this cursory examination it was found that l values of 0.01, 0.1, and 1
were typically among the best. Therefore, the following examination of the
prediction quality concentrates on the prediction quality of each combination of
sampling, soil attribute and profile for the quadratic splines fitted with l values
of 0.01, 0.1 and 1. In addition the l values with the best and worst RMSE were
used in the following comparisons, along with the mean RMSE value across all
values of l. This was done to examine the variation in prediction quality when
the chosen l value may be unknowingly among the worst or best.

3.3. Examples of modelled soil attribute depth functions

Due to the large number of soil attribute depth functions that were modelled,
it is impossible to present individually a significant portion of the fitted depth
functions. Therefore, only a small example set of modelled soil attribute depth
functions will be shown. These figures show the improvement in the prediction
quality of the equal-area quadratic spline functions when additional samples

Table 3
Profile description of Krasnozem from Robertson, NSW

Horizon Depth pH EC Clay Sand Organic y33 kPa w AD w
y1 y1 y1Ž . Ž . Ž .interval mS m content content carbon kg kg kg kg

y1 y1 y1Ž . Ž . Ž . Ž .cm dag kg dag kg dag kg

Top 0–2 4.02 3.92 73.13 12.6 0.29 0.331 0.059
A11 0–4 4.05 4.34 66.32 17.55 0.49 0.364 0.068
A12 4–44 4.22 3.30 69.03 15.72 0.66 0.369 0.067
B2 44–100 4.04 4.68 72.30 13.24 0.27 0.333 0.063
Bottom 98–100 3.92 3.43 80.31 8.98 0.21 0.359 0.064
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Fig. 2. RMSE value vs. log l of equal-area quadratic splines fitted through EC horizon data in10

addition to top and bottom profile samples for the Red Podzolic Soil.

from the top and bottom of the profile are used for modelling the depth
Ž .functions Fig. 4 as compared to when only horizon data is used to model the

Ž .depth function Fig. 5 . Furthermore Fig. 4 illustrates the effect of different l

values with a value of 0.1 fitting the data better than a value of 10.

3.4. Determination of the accuracy of the fittingrsampling schemes

Ž .The calculation of RMSE Eq. 8 was used to determine the accuracy of the
various fittingrsampling schemes used to model the soil attribute depth func-

Fig. 3. RMSE value vs. log l of equal-area quadratic splines fitted through EC horizon data for10

the Red Podzolic Soil.
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Ž . Ž .Fig. 4. Equal-area quadratic splines with l values of 0.1 solid line and 10 dashed line fitted
through horizon data in addition to top and bottom profile sample data for the Red Podzolic soil.

tions. The RMSE gives the average absolute difference between the fittingrsam-
pling scheme and the true soil attribute depth function. The difference is in the
same units as the soil attribute being predicted. The magnitude of the RMSE
value is, in part, dependent on the magnitude of the soil attribute in question. As
a result, RMSE values cannot be averaged across the three different soil profiles

Ž .Fig. 5. Equal-area quadratic spline l values of 0.1 fitted through horizon data for the Red
Podzolic soil.
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to find the most accurate fittingrsampling scheme for predicting a particular soil
attribute. For example, it would not be feasible to compare, by averaging, the
RMSE of a fittingrsampling scheme in predicting the clay content of a Podzol
and a Krasnozem because a Podzol has a clay content of only a few percent and
the Krasnozem may have clay contents up to 60–80%. Therefore, simply
averaging the RMSE values could give rise to uneven weighting between the
three soil types used in this study.

A more robust method for determining the most accurate fittingrsampling
scheme was needed. A simple ranking system was decided upon, where the
RMSE of each fittingrsampling scheme for each soil attribute and for each

Ž . Ž .profile was ranked from the smallest 1st to largest last .

3.5. General determination of the most accurate fitting procedure

An initial analysis of the results was performed to determine which fitting
procedure was the most accurate predictor for all the soil attributes. To do this,
the mean and standard deviation of rank was determined for each type of
function across all the soil attributes, and for all soil types. The sampling
scheme was not considered in this analysis, so the four different sampling
schemes used for each function were treated as being the same. The mean rank
and standard deviation of rank were then plotted for each fitting procedure
where the closest to the bottom left-hand corner was the most accurate predictor
Ž .Fig. 6 . The standard deviation of rank is important as it is a measure of the
consistency of prediction of the fitting procedure, but in marginal cases the
mean rank is deemed more important.

Fig. 6 and Table 4 shows that quadratic spline functions are generally the
most accurate predictors of soil attribute depth functions. Not surprisingly, the
spline fitted with the best l value is the best predictor followed by the 0.1l,

Fig. 6. Testing the accuracy of the fitting procedures across all soil attributes.
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Table 4
Ž .Results of the determination of accuracy of the fitting procedures across all soil attributes Fig. 6

Fitting procedure Mean rank Standard deviation
of rank

Best spline 11.86 10.62
0.1 l spline 14.38 9.75
0.01 l spline 15.58 10.63
Mean spline 16.89 8.19
Horizon data 18.77 9.79
1 l spline 19.56 8.74
Quadratic polynomial 23.82 10.56
Worst spline 26.65 9.78
Exponential decay function 29.01 10.53
Linear regression 29.81 10.18

0.01l and mean spline. Next is the 1l spline and the horizon data which have
very similar prediction qualities. Another noticeable result is that the spline
fitted with worst l value is still a better predictor than the linear regression or
exponential decay functions.

3.6. General determination of the most accurate fittingrsampling combination

To find the most accurate combination of fitting and sampling procedures for
all soil attributes, the same procedure was used as explained previously. The
only exception being that the different sampling procedures used for each fitting
procedure were considered separately enabling a determination of the most
accurate fittingrsampling combination.

Fig. 7 and Table 5 show the dominance of the spline functions. Key features
of the results are the spline fitted with the best l being the best predictor for
each different sampling scheme, followed by the 0.1l which was marginally
better than the 0.01l splines. Furthermore for each predictor, in general, the
sampling scheme giving the best predictions was the one using the top and
bottom profile samples, followed by using only bottom or top profile samples
which had similar predictive ability. The worst sampling scheme was to use only
horizon data.

3.7. Determination of the most accurate fittingrsampling combination for
indiÕidual soil attributes

To ascertain whether any fittingrsampling combination was particularly
accurate in predicting an individual soil attribute, the mean rank and standard
deviation of rank for individual soil attributes were obtained across the three soil
types sampled. In each case, the standard deviation of rank was plotted against
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Ž .Fig. 7. Testing the accuracy of different combinations of fitting and sampling procedures a
Ž . Ž . Ž .horizon data b horizon data, top and bottom profile data c horizon and bottom profile data d

horizon and top profile data.

Table 5
Ž .Results of the ten most accurate fittingrsampling combinations across all soil attributes Fig. 7

Fittingrsampling comb. Mean rank Standard deviation
of rank

Best Spline-horizon, topqbottom 5.00 5.94
Best Spline-horizon, bottom 7.52 7.45
0.1l Spline-horizon, topqbottom 9.10 8.46
0.01l Spline-horizon, topqbottom 9.86 7.55
Best Spline-horizon, top 10.42 9.29
0.1l Spline-horizon, bottom 12.86 8.13
0.1l Spline-horizon, top 13.09 8.12
0.01l Spline-horizon, bottom 13.33 9.05
Best Spline-horizon, normal 13.81 8.21
0.01l Spline-horizon, top 14.09 8.99
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Table 6
Ž .Results of the determinations of the most accurate top 10 fittingrsampling combinations for

individual soil attributesabc

Rank AD w y33 kPa w Clay Sand OC pH EC
4 1.3 8.3 5.7 4.3 2 2.31st BSpTB BSpTB BSpB BSpT BSpB BSpTB BSpTB

4.7 3 10 7 5.7 3.3 4.72nd BSpB 0.1lTB 0.1lT BSpTB 0.1lB 0.1lTB BSpB
6 4 9.3 7.7 7 3.7 7.73rd 0.1lTB 0.01lTB 2PTB 0.1lT 0.1lTB 0.01lTB BSpN

6.7 4.3 9.7 8.7 6.7 4 9.34th BSpN BSpB BSpTB 0.1lTB BSpTB BSpT BSpT
8.7 10.3 11.3 9.3 7.7 5 125th BSpT 0.01lB 0.01lT 1lTB 2PB 0.01lT 0.01lT

9 10.7 12.3 10 8 6.7 136th 0.01lTB 0.1lB BSpN 0.1lB 0.01lTB 0.1lT 1lTB
12.3 11 12.7 8.7 8 10 14.37th 0.01lB BSpN 1SpN BSpB 0.01lB BSpB 1lN
13 11 12.3 10.3 10 11.3 15.38th MSpTB MSpTB 0.1lTB HorB HorB BSpN 1lB
13.7 11.7 12.3 12 13 13 14.39th 0.01lB BSpT 0.01lTB HorTB BSpT 0.01lB 0.1lN

14 12.3 13.7 11.3 15.3 13.3 1610th HorTB HorT 1lB 0.01lB 1lTB 0.1lB 0.01lTB

aNumbers in superscript: mean ranking.
b Ž .Key for table fitting procedure used : BSp: Best spline, MSp; Mean spline, 0.01l: 0.01l

Spline, 0.1l: 0.1l Spline, 1l: 1l Spline, Hor: Horizon sampling, 2P: Quadratic polynomial.
c Ž .Key for table sampling procedure used : N: horizon data only, TB: horizon data, top and

bottom profile samples used, T: horizon data and top profile sample used, B: horizon data and
bottom profile sample used.

mean rank to determine the most accurate fittingrsampling procedure. A
summary of the results is presented in Table 6.

4. Discussion

4.1. The predictiÕe quality of traditional methods of modelling depth functions

The assessments of the accuracy of the various fitting procedures showed that
the spline functions were the best predictors of soil attribute depth functions. As
expected the polynomial and exponential decay functions performed poorly
when used to model soil attribute depth functions.

When only the fitting procedures were considered, the horizon data was more
accurate in reconstructing the depth functions than any of the other functions

Ž . Ž .used excepting the spline functions Fig. 6 and Table 4 . This is a very poor
result for these functions, as they attempt to improve upon the horizon data.
Furthermore, when considering the overall prediction quality of the fittingrsam-
pling combinations to predict soil attribute depth functions, Fig. 7 shows that,
excluding spline functions, the horizon data with samples from the top and
bottom of the profile outperforms all of the other fittingrsampling combina-
tions.

More specifically, exponential decay functions underperformed when attempt-
Ž .ing to predict soil attribute depth functions Fig. 7 and Fig. 8 . In particular they
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performed poorly when attempting to predict organic carbon depth functions for
Ž .which they are traditionally believed to be good predictors Webster, 1978 .

This is evidenced by their absence from the top ten predictors of organic carbon
Ž . Ž Ž .depth functions Table 6 . Other studies Brewer 1968 , Russell and Moore

Ž . Ž ..1968 and Moore et al. 1972 have used exponential decay functions to model
organic carbon depth functions but admittedly this was not from bulk horizon
samples.

4.2. The predictiÕe quality of the equal-area quadratic splines

In nearly every aspect, the spline functions were the best predictors of depth
functions. First, when only the fitting procedures were considered, the spline

Ž .functions were the best predictors Fig. 6 and Table 4 . Furthermore, when the
combinations of fittingrsample procedures were considered, the top ten combi-

Ž .nations involved splines Fig. 7 and Table 5 . When the best combinations of
fittingrsampling procedures for individual attributes were considered, spline

Ž .functions dominated the top 10 predictors of each soil attribute Table 6 .
The spline functions were the best predictors due to their high degree of

Ž .flexibility compared to the other fitting methods Webster, 1978 . The flexibility
is due to fitting quadratic polynomials through each sample interval, e.g.,
horizon depth, therefore local variations in the soil profile do not affect the fit

Ž .elsewhere Ponce-Hernandez et al., 1986 . The other mathematical functions
used were less flexible and therefore affected by local variations in soil profiles.
The other reason for the spline functions being the best predictors was the
equal-area criteria which minimised the effect of ‘damping’ caused by horizon

Ž .sampling Ponce-Hernandez et al., 1986 .

4.3. The best l Õalue to use for predicting depth functions

While the spline functions were obviously the best predictor of depth
functions, the best l value to use has yet to be discussed. For the quadratic
splines to be of any use, a standard a priori l value must be recommended
which can perform reasonably well under most circumstances without resorting

Ž .to the impracticable method described earlier Section 2 to determine the best l

value. Initially it was believed that the best l value to use would be 0.01, 0.1 or
1. Examination of Figs. 6 and 7 and Tables 4–6 indicates that a l values of 0.1
is marginally better than 0.01, and both are significantly better than a l of 1.

4.4. The ‘best’ sampling scheme

Since spline functions are obviously the best predictors of depth functions and
0.1 has been chosen as the standard l value to use when modelling depth
functions, it was decided to consider the best sampling combination in conjunc-
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tion with only the 0.1l spline function. Simply by looking at Fig. 7 and Table 5,
it can be seen that in order, the best sampling schemes in conjunction with
spline functions are the top and bottom of the profile samples followed by the
using only the bottom of the profile samples which is marginally better than
using only top of the profile samples. Using only the horizon data gives the
worst predictions.

These results are expected, since the more information available from which
depth functions can be reconstructed, the more accurate the prediction should
be. Therefore, the sampling procedure with the extra samples from the top and
bottom profile samples would be expected to be the best and modelling depth
functions based solely on horizon data would be excepted to be the worst.

4.5. The possibility of ‘specialist’ functions for modelling the depth functions of
indiÕidual soil attribute

Another aspect of the results that has not been discussed, is the possibility of
specialist fitting procedures for individual soil attributes rather than one univer-
sal fitting procedure for all soil attributes. Due to the limited number of soil
profiles used in the experiment it is not possible to make a definitive statement
about specialist fitting procedures. Examination of Table 6 shows that for five of

Ž .the soil attributes measured excluding the best l splines , the best fittingrsam-
pling combination had an approximate mean ranking of between five and ten.
Since it would be expected that a specialist fittingrsampling procedure would
have a lower mean ranking, none of the combinations seem to be potential
specialists for a particular soil attribute. The exception to this is the modelling of
the pH and y33 kPa which for the 0.1l spline using top and bottom profile
samples had a mean ranking of 3.3 and 3, respectively.

This results is not as significant as its seems since this fittingrsampling
combination has already been identified as the best general predictor of depth
functions. A more significant result would have occurred if an otherwise poor
predictor, e.g. quadratic polynomial, was particularly good at predicting an
individual soil attribute. Even so, due to the limited number of soil types that
were sampled, there still remains a possibility that ‘specialist’ functions for
certain soil attributes do exist.

5. Conclusions and future research

In this limited study, spline functions were clearly the best general predictors
of soil attribute depth functions. In choosing a l value for the splines, it is
recommended that 0.1 or 0.01 be used as these were in general, the best
predictors.

A consideration of the optimum sampling procedure to use in conjunction
with the spline functions revealed that significant improvements could be made
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to the prediction quality by taking extra samples from the top and bottom of the
soil profiles in addition to the horizon samples. The best predictions were
achieved when both of the extra samples were used to model the depth
functions. If only one extra sample could be taken and measured, it was
inconclusive whether it was better to use a sample from either the top or bottom
of the profile. The splines modelled only through horizon data were worse
predictors. Nevertheless, for each possible sampling procedure, the spline func-
tion outperformed all other fitting procedures. In particular the 0.1 and 0.01 l

splines outperformed the other splines.
For individual soil attributes, no other fitting procedures were obviously

better than the spline functions. Therefore, no specialist fitting procedures for
individual soil attributes were evident. Due to this, the 0.01 or 0.1 l ‘equal-area’
quadratic spline function for the soil types and attributes studied is considered to
be the best predictor of depth functions for all possible sampling combinations.

The method presented here have as at least two direct applications. First, the
method can be used to provide soil data over specified depth ranges for
one-dimensional simulation models of soil processes. Secondly, in three-dimen-
sional spatial prediction of soil properties, the method proposed here is a natural
candidate for dealing with vertical non-stationarity with a change of support.

Clearly, a limited set of soil profile classes and attributes were investigated
here. For an unbiased assessment of the results in this paper, ideally a separate
data set should have been used to examine the quality of the ‘equal-area
quadratic spline’, in particular the prediction quality with the recommended l

values of 0.01 and 0.1. Unfortunately the collection of further validation sets is
Ž .time consuming and expensive as evidenced by Ponce-Hernandez et al. 1986

not using any real data in their paper. Therefore the results in this paper should
be only be taken as a preliminary study.
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